Home |
| Latest | About | Random
# Week 2 Thursday Problems ## Reading. Chapter 7.2. And preview chapter 7.3, and more practice in 7.5. Keep going keep going ! ! ! You can do it ! ## Problems. 1. Use the methods described today to deal with the following integrals involving trigonometric functions. 1. $\displaystyle\int \sin^3(x)\cos^2(x)dx$ 2. $\displaystyle\int \cos^9(x)\sin^5(x)dx$ 3. $\displaystyle\int \cos^2(x)dx$ 4. $\displaystyle\int \sin^2(x)\cos^2(x)dx$ 5. $\displaystyle\int\tan(x)\sec^3(x)dx$ 6. $\displaystyle\int \sin(x)\sec^5(x)dx$ .... do you see a tangent here? 7. $\displaystyle\int \sin(5x)\sin(2x)dx$ ... Hint: Use the product-to-sum trigonometric identities. 8. $\displaystyle\int\sin(8x)\cos(5x)dx$ 2. Use Weierstrass substitution to find the following: 1. $\displaystyle\int \frac{dx}{1-\cos(x)}$ 2. $\displaystyle\int \frac{dx}{3\sin(x)-4\cos(x)}$ 3. Try to derive $\displaystyle\int \sec(x)dx$ in the following way: (as outlined in text): - Multiply the integrand by $1=\frac{\tan(x)+\sec(x)}{\tan(x)+\sec(x)}$ - Then do a substitution $u=\tan(x)+\sec(x)$ 4. Similarly, try to derive $\displaystyle\int \csc(x)dx$ in the following way:: - Multiply the integrand by $1=\frac{\csc(x)+\cot(x)}{\csc(x)+\cot(x)}$ - Then do a substitution $u=\csc(x)+\cot(x)$ 5. (Optional but good for your development) Let us try to figure out why if we set $t=\tan(\frac{x}{2})$ in Weierstrass substitution, we get $\cos(x)= \frac{t^2-1}{t^2+1}$, $\sin(x)=\frac{2t}{t^2+1}$, and $dx= \frac{2}{1+x^2} dt$. 1. First, draw a right triangle where one of the angle is $\frac{x}{2}$. If $t=\tan(\frac{x}{2})$, label the sides of the triangle in terms of $t$. 2. Using your triangle, show that $\cos\left( \frac{x}{2} \right)= \frac{1}{\sqrt{1+t^2}}$ and $\sin\left( \frac{x}{2} \right)=\frac{t}{\sqrt{1+t^2}}$. 3. Use double angle formula and/or Pythagorean identity to show $\cos(x) = \frac{t^2-1}{t^2+1}$ and $\sin(x) = \frac{2t}{t^2+1}$. 4. Finally, if $t=\tan(\frac{x}{2})$, show $dx = \frac{2}{1+t^2}dt$. ///